MakeItFrom.com
Menu (ESC)

Nickel 825 vs. 413.0 Aluminum

Nickel 825 belongs to the nickel alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 825 and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 190
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
28
Shear Strength, MPa 430
170
Tensile Strength: Ultimate (UTS), MPa 650
270
Tensile Strength: Yield (Proof), MPa 260
140

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1400
590
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 7.2
7.6
Embodied Energy, MJ/kg 100
140
Embodied Water, L/kg 230
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 20
36
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 0.2
82.2 to 89
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
0 to 1.0
Iron (Fe), % 22 to 37.9
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0 to 0.5
Silicon (Si), % 0 to 0.050
11 to 13
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25