MakeItFrom.com
Menu (ESC)

Nickel 825 vs. 5652 Aluminum

Nickel 825 belongs to the nickel alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 825 and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
6.8 to 25
Fatigue Strength, MPa 190
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 430
110 to 170
Tensile Strength: Ultimate (UTS), MPa 650
190 to 290
Tensile Strength: Yield (Proof), MPa 260
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1370
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 7.2
8.6
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 170
40 to 480
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
20 to 30
Strength to Weight: Bending, points 20
27 to 36
Thermal Diffusivity, mm2/s 2.9
57
Thermal Shock Resistance, points 17
8.4 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.2
95.8 to 97.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0.15 to 0.35
Copper (Cu), % 1.5 to 3.0
0 to 0.040
Iron (Fe), % 22 to 37.9
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Silicon (Si), % 0 to 0.050
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15