MakeItFrom.com
Menu (ESC)

Nickel 825 vs. 6262 Aluminum

Nickel 825 belongs to the nickel alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 825 and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
4.6 to 10
Fatigue Strength, MPa 190
90 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 430
170 to 240
Tensile Strength: Ultimate (UTS), MPa 650
290 to 390
Tensile Strength: Yield (Proof), MPa 260
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 11
170
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 41
10
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 7.2
8.3
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
530 to 940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 22
29 to 39
Strength to Weight: Bending, points 20
35 to 42
Thermal Diffusivity, mm2/s 2.9
69
Thermal Shock Resistance, points 17
13 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.2
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0.040 to 0.14
Copper (Cu), % 1.5 to 3.0
0.15 to 0.4
Iron (Fe), % 22 to 37.9
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Silicon (Si), % 0 to 0.050
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15