MakeItFrom.com
Menu (ESC)

Nickel 825 vs. EN 1.0434 Steel

Nickel 825 belongs to the nickel alloys classification, while EN 1.0434 steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
12 to 28
Fatigue Strength, MPa 190
190 to 300
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 430
280 to 330
Tensile Strength: Ultimate (UTS), MPa 650
390 to 540
Tensile Strength: Yield (Proof), MPa 260
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 14
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 41
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 7.2
1.4
Embodied Energy, MJ/kg 100
18
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170 to 540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
14 to 19
Strength to Weight: Bending, points 20
15 to 19
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 17
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.2
0.020 to 0.060
Carbon (C), % 0 to 0.050
0.15 to 0.19
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
0
Iron (Fe), % 22 to 37.9
98.8 to 99.18
Manganese (Mn), % 0 to 1.0
0.65 to 0.85
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0.6 to 1.2
0