MakeItFrom.com
Menu (ESC)

Nickel 825 vs. Titanium 6-6-2

Nickel 825 belongs to the nickel alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
6.7 to 9.0
Fatigue Strength, MPa 190
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
44
Shear Strength, MPa 430
670 to 800
Tensile Strength: Ultimate (UTS), MPa 650
1140 to 1370
Tensile Strength: Yield (Proof), MPa 260
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 980
310
Melting Completion (Liquidus), °C 1400
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 11
5.5
Thermal Expansion, µm/m-K 14
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 41
40
Density, g/cm3 8.2
4.8
Embodied Carbon, kg CO2/kg material 7.2
29
Embodied Energy, MJ/kg 100
470
Embodied Water, L/kg 230
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 22
66 to 79
Strength to Weight: Bending, points 20
50 to 57
Thermal Diffusivity, mm2/s 2.9
2.1
Thermal Shock Resistance, points 17
75 to 90

Alloy Composition

Aluminum (Al), % 0 to 0.2
5.0 to 6.0
Carbon (C), % 0 to 0.050
0 to 0.050
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 22 to 37.9
0.35 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
5.0 to 6.0
Nickel (Ni), % 38 to 46
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0.6 to 1.2
82.8 to 87.8
Residuals, % 0
0 to 0.4