MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C14700 Copper

Nickel 825 belongs to the nickel alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
160 to 190
Tensile Strength: Ultimate (UTS), MPa 650
240 to 320
Tensile Strength: Yield (Proof), MPa 260
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 11
370
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
95
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
96

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 170
31 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.3 to 10
Strength to Weight: Bending, points 20
9.5 to 12
Thermal Diffusivity, mm2/s 2.9
110
Thermal Shock Resistance, points 17
8.4 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
99.395 to 99.798
Iron (Fe), % 22 to 37.9
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Phosphorus (P), % 0
0.0020 to 0.0050
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0.2 to 0.5
Titanium (Ti), % 0.6 to 1.2
0
Residuals, % 0
0 to 0.1