MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C19800 Copper

Nickel 825 belongs to the nickel alloys classification, while C19800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
9.0 to 12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
260 to 330
Tensile Strength: Ultimate (UTS), MPa 650
430 to 550
Tensile Strength: Yield (Proof), MPa 260
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1070
Melting Onset (Solidus), °C 1370
1050
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 11
260
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
62

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.2
2.8
Embodied Energy, MJ/kg 100
43
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 170
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
14 to 17
Strength to Weight: Bending, points 20
14 to 17
Thermal Diffusivity, mm2/s 2.9
75
Thermal Shock Resistance, points 17
15 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
95.7 to 99.47
Iron (Fe), % 22 to 37.9
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Phosphorus (P), % 0
0.010 to 0.1
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2