MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C34500 Brass

Nickel 825 belongs to the nickel alloys classification, while C34500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 430
220 to 260
Tensile Strength: Ultimate (UTS), MPa 650
340 to 430
Tensile Strength: Yield (Proof), MPa 260
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1400
910
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 41
24
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
45
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 170
69 to 160
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
12 to 15
Strength to Weight: Bending, points 20
13 to 16
Thermal Diffusivity, mm2/s 2.9
37
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
62 to 65
Iron (Fe), % 22 to 37.9
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4