MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C42200 Brass

Nickel 825 belongs to the nickel alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 430
210 to 350
Tensile Strength: Ultimate (UTS), MPa 650
300 to 610
Tensile Strength: Yield (Proof), MPa 260
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1370
1020
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 41
29
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 7.2
2.7
Embodied Energy, MJ/kg 100
44
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
9.5 to 19
Strength to Weight: Bending, points 20
11 to 18
Thermal Diffusivity, mm2/s 2.9
39
Thermal Shock Resistance, points 17
10 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
86 to 89
Iron (Fe), % 22 to 37.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5