MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C46400 Brass

Nickel 825 belongs to the nickel alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
17 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 430
270 to 310
Tensile Strength: Ultimate (UTS), MPa 650
400 to 500
Tensile Strength: Yield (Proof), MPa 260
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 41
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 7.2
2.7
Embodied Energy, MJ/kg 100
47
Embodied Water, L/kg 230
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
14 to 17
Strength to Weight: Bending, points 20
15 to 17
Thermal Diffusivity, mm2/s 2.9
38
Thermal Shock Resistance, points 17
13 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
59 to 62
Iron (Fe), % 22 to 37.9
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
36.3 to 40.5
Residuals, % 0
0 to 0.4