MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C50100 Bronze

Nickel 825 belongs to the nickel alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
180
Tensile Strength: Ultimate (UTS), MPa 650
270
Tensile Strength: Yield (Proof), MPa 260
82

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
230
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
55
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
55

Otherwise Unclassified Properties

Base Metal Price, % relative 41
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
42
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
82
Resilience: Unit (Modulus of Resilience), kJ/m3 170
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.3
Strength to Weight: Bending, points 20
10
Thermal Diffusivity, mm2/s 2.9
66
Thermal Shock Resistance, points 17
9.5

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
98.6 to 99.49
Iron (Fe), % 22 to 37.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Phosphorus (P), % 0
0.010 to 0.050
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.8
Titanium (Ti), % 0.6 to 1.2
0
Residuals, % 0
0 to 0.5