MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C61300 Bronze

Nickel 825 belongs to the nickel alloys classification, while C61300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
370 to 390
Tensile Strength: Ultimate (UTS), MPa 650
550 to 580
Tensile Strength: Yield (Proof), MPa 260
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1400
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 460
420
Thermal Conductivity, W/m-K 11
55
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
13

Otherwise Unclassified Properties

Base Metal Price, % relative 41
29
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 7.2
3.0
Embodied Energy, MJ/kg 100
49
Embodied Water, L/kg 230
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230 to 410
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
18 to 19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 2.9
15
Thermal Shock Resistance, points 17
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.2
6.0 to 7.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
88 to 91.8
Iron (Fe), % 22 to 37.9
2.0 to 3.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.2 to 0.5
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2