MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C63200 Bronze

Nickel 825 belongs to the nickel alloys classification, while C63200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
17 to 18
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 430
390 to 440
Tensile Strength: Ultimate (UTS), MPa 650
640 to 710
Tensile Strength: Yield (Proof), MPa 260
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 980
230
Melting Completion (Liquidus), °C 1400
1060
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 11
35
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
29
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 7.2
3.4
Embodied Energy, MJ/kg 100
55
Embodied Water, L/kg 230
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 170
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
21 to 24
Strength to Weight: Bending, points 20
20 to 21
Thermal Diffusivity, mm2/s 2.9
9.6
Thermal Shock Resistance, points 17
22 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.2
8.7 to 9.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
78.8 to 82.6
Iron (Fe), % 22 to 37.9
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
1.2 to 2.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
4.0 to 4.8
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Residuals, % 0
0 to 0.5