MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C95700 Bronze

Nickel 825 belongs to the nickel alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 34
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
47
Tensile Strength: Ultimate (UTS), MPa 650
680
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1400
990
Melting Onset (Solidus), °C 1370
950
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 11
12
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
26
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 7.2
3.3
Embodied Energy, MJ/kg 100
54
Embodied Water, L/kg 230
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
390
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 2.9
3.3
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
7.0 to 8.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
71 to 78.5
Iron (Fe), % 22 to 37.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
11 to 14
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
1.5 to 3.0
Silicon (Si), % 0 to 0.050
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Residuals, % 0
0 to 0.5