MakeItFrom.com
Menu (ESC)

Nickel 890 vs. ASTM Grade LCC Steel

Nickel 890 belongs to the nickel alloys classification, while ASTM grade LCC steel belongs to the iron alloys. They have a modest 27% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 180
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 590
570
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1390
1450
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 47
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 120
18
Embodied Water, L/kg 250
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
20
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0 to 0.25
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 17.3 to 33.9
96.9 to 100
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 2.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.045
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0
Residuals, % 0
0 to 1.0