MakeItFrom.com
Menu (ESC)

Nickel 890 vs. EN 1.5503 Steel

Nickel 890 belongs to the nickel alloys classification, while EN 1.5503 steel belongs to the iron alloys. They have a modest 27% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
12 to 17
Fatigue Strength, MPa 180
180 to 280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 400
270 to 320
Tensile Strength: Ultimate (UTS), MPa 590
400 to 520
Tensile Strength: Yield (Proof), MPa 230
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 47
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 120
18
Embodied Water, L/kg 250
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 140
200 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
14 to 19
Strength to Weight: Bending, points 19
15 to 18
Thermal Shock Resistance, points 15
12 to 15

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.060 to 0.14
0.16 to 0.2
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 17.3 to 33.9
98.4 to 99.239
Manganese (Mn), % 0 to 1.5
0.6 to 0.8
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 2.0
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0