MakeItFrom.com
Menu (ESC)

Nickel 890 vs. EN AC-46500 Aluminum

Nickel 890 belongs to the nickel alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 890 and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 39
1.0
Fatigue Strength, MPa 180
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
28
Tensile Strength: Ultimate (UTS), MPa 590
270
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
610
Melting Onset (Solidus), °C 1340
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 47
10
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 250
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
32
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
77.9 to 90
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0 to 0.15
Copper (Cu), % 0 to 0.75
2.0 to 4.0
Iron (Fe), % 17.3 to 33.9
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 1.5
0 to 0.55
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0 to 0.55
Niobium (Nb), % 0.2 to 1.0
0
Silicon (Si), % 1.0 to 2.0
8.0 to 11
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.15 to 0.6
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25