MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C11300 Copper

Nickel 890 belongs to the nickel alloys classification, while C11300 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C11300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
2.3 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 400
160 to 240
Tensile Strength: Ultimate (UTS), MPa 590
230 to 410
Tensile Strength: Yield (Proof), MPa 230
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1390
1080
Melting Onset (Solidus), °C 1340
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 47
32
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 120
42
Embodied Water, L/kg 250
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 140
25 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
7.2 to 13
Strength to Weight: Bending, points 19
9.4 to 14
Thermal Shock Resistance, points 15
8.2 to 15

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
99.85 to 99.973
Iron (Fe), % 17.3 to 33.9
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0
Niobium (Nb), % 0.2 to 1.0
0
Silicon (Si), % 1.0 to 2.0
0
Silver (Ag), % 0
0.027 to 0.050
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0
Residuals, % 0
0 to 0.1