MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C91300 Bell Metal

Nickel 890 belongs to the nickel alloys classification, while C91300 bell metal belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C91300 bell metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 39
0.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
38
Tensile Strength: Ultimate (UTS), MPa 590
240
Tensile Strength: Yield (Proof), MPa 230
210

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 1000
150
Melting Completion (Liquidus), °C 1390
890
Melting Onset (Solidus), °C 1340
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 47
39
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 8.2
4.5
Embodied Energy, MJ/kg 120
74
Embodied Water, L/kg 250
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
1.1
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
7.8
Strength to Weight: Bending, points 19
10
Thermal Shock Resistance, points 15
9.3

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
79 to 82
Iron (Fe), % 17.3 to 33.9
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 1.0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
18 to 20
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6