MakeItFrom.com
Menu (ESC)

Nickel 890 vs. S31727 Stainless Steel

Nickel 890 belongs to the nickel alloys classification, while S31727 stainless steel belongs to the iron alloys. They have 62% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
40
Fatigue Strength, MPa 180
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 590
630
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 1000
1010
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 47
24
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
4.7
Embodied Energy, MJ/kg 120
64
Embodied Water, L/kg 250
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
200
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
20
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0 to 0.030
Chromium (Cr), % 23.5 to 28.5
17.5 to 19
Copper (Cu), % 0 to 0.75
2.8 to 4.0
Iron (Fe), % 17.3 to 33.9
53.7 to 61.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
3.8 to 4.5
Nickel (Ni), % 40 to 45
14.5 to 16.5
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0