MakeItFrom.com
Menu (ESC)

Nickel 890 vs. S40930 Stainless Steel

Nickel 890 belongs to the nickel alloys classification, while S40930 stainless steel belongs to the iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
23
Fatigue Strength, MPa 180
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 400
270
Tensile Strength: Ultimate (UTS), MPa 590
430
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 1000
710
Melting Completion (Liquidus), °C 1390
1450
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 47
8.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.3
Embodied Energy, MJ/kg 120
32
Embodied Water, L/kg 250
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
80
Resilience: Unit (Modulus of Resilience), kJ/m3 140
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
16
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0 to 0.030
Chromium (Cr), % 23.5 to 28.5
10.5 to 11.7
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 17.3 to 33.9
84.7 to 89.4
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0.050 to 0.2