MakeItFrom.com
Menu (ESC)

Nickel 908 vs. 5652 Aluminum

Nickel 908 belongs to the nickel alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 908 and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
68
Elongation at Break, % 11
6.8 to 25
Fatigue Strength, MPa 450
60 to 140
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 800
110 to 170
Tensile Strength: Ultimate (UTS), MPa 1340
190 to 290
Tensile Strength: Yield (Proof), MPa 930
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 920
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 8.6
24

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.6
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
40 to 480
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 45
20 to 30
Strength to Weight: Bending, points 33
27 to 36
Thermal Diffusivity, mm2/s 2.9
57
Thermal Shock Resistance, points 61
8.4 to 13

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
95.8 to 97.7
Boron (B), % 0 to 0.012
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 3.8 to 4.5
0.15 to 0.35
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0 to 0.040
Iron (Fe), % 35.6 to 44.6
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 1.0
0 to 0.010
Nickel (Ni), % 47 to 51
0
Niobium (Nb), % 2.7 to 3.3
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 1.2 to 1.8
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15