MakeItFrom.com
Menu (ESC)

Nickel 908 vs. 6008 Aluminum

Nickel 908 belongs to the nickel alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 908 and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 11
9.1 to 17
Fatigue Strength, MPa 450
55 to 88
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 800
120 to 170
Tensile Strength: Ultimate (UTS), MPa 1340
200 to 290
Tensile Strength: Yield (Proof), MPa 930
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
190
Thermal Expansion, µm/m-K 8.6
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.5
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
76 to 360
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 45
21 to 29
Strength to Weight: Bending, points 33
28 to 35
Thermal Diffusivity, mm2/s 2.9
77
Thermal Shock Resistance, points 61
9.0 to 13

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
96.5 to 99.1
Boron (B), % 0 to 0.012
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 3.8 to 4.5
0 to 0.3
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 35.6 to 44.6
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.3
Nickel (Ni), % 47 to 51
0
Niobium (Nb), % 2.7 to 3.3
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.5 to 0.9
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 1.2 to 1.8
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15