MakeItFrom.com
Menu (ESC)

Nickel 908 vs. 6261 Aluminum

Nickel 908 belongs to the nickel alloys classification, while 6261 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 908 and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 11
9.0 to 16
Fatigue Strength, MPa 450
60 to 120
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 800
90 to 180
Tensile Strength: Ultimate (UTS), MPa 1340
150 to 300
Tensile Strength: Yield (Proof), MPa 930
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 920
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
180
Thermal Expansion, µm/m-K 8.6
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.3
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
77 to 500
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 45
15 to 31
Strength to Weight: Bending, points 33
23 to 37
Thermal Diffusivity, mm2/s 2.9
75
Thermal Shock Resistance, points 61
6.5 to 13

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
96.6 to 98.6
Boron (B), % 0 to 0.012
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 3.8 to 4.5
0 to 0.1
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0.15 to 0.4
Iron (Fe), % 35.6 to 44.6
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.35
Nickel (Ni), % 47 to 51
0
Niobium (Nb), % 2.7 to 3.3
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.4 to 0.7
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 1.2 to 1.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15