MakeItFrom.com
Menu (ESC)

Nickel 908 vs. 7076 Aluminum

Nickel 908 belongs to the nickel alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 908 and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
70
Elongation at Break, % 11
6.2
Fatigue Strength, MPa 450
170
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 70
27
Shear Strength, MPa 800
310
Tensile Strength: Ultimate (UTS), MPa 1340
530
Tensile Strength: Yield (Proof), MPa 930
460

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
460
Specific Heat Capacity, J/kg-K 460
860
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 8.6
24

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 9.3
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
1510
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 45
49
Strength to Weight: Bending, points 33
48
Thermal Diffusivity, mm2/s 2.9
54
Thermal Shock Resistance, points 61
23

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
86.9 to 91.2
Boron (B), % 0 to 0.012
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 3.8 to 4.5
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0.3 to 1.0
Iron (Fe), % 35.6 to 44.6
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Nickel (Ni), % 47 to 51
0
Niobium (Nb), % 2.7 to 3.3
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 1.2 to 1.8
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15