MakeItFrom.com
Menu (ESC)

Nickel 908 vs. AWS E70C-B2L

Nickel 908 belongs to the nickel alloys classification, while AWS E70C-B2L belongs to the iron alloys. They have 42% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 908 and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
190
Elongation at Break, % 11
21
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 70
73
Tensile Strength: Ultimate (UTS), MPa 1340
580
Tensile Strength: Yield (Proof), MPa 930
460

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 11
39
Thermal Expansion, µm/m-K 8.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 50
3.0
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 9.3
1.6
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 170
54

Common Calculations

PREN (Pitting Resistance) 4.2
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
550
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 45
20
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 61
17

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
0
Boron (B), % 0 to 0.012
0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 3.8 to 4.5
1.0 to 1.5
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0 to 0.35
Iron (Fe), % 35.6 to 44.6
95.1 to 98
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 47 to 51
0 to 0.2
Niobium (Nb), % 2.7 to 3.3
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.5
0.25 to 0.6
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 1.2 to 1.8
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5