Nickel 908 vs. EN 1.5508 Steel
Nickel 908 belongs to the nickel alloys classification, while EN 1.5508 steel belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is nickel 908 and the bottom bar is EN 1.5508 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 180 | |
190 |
Elongation at Break, % | 11 | |
11 to 20 |
Fatigue Strength, MPa | 450 | |
210 to 320 |
Poisson's Ratio | 0.3 | |
0.29 |
Shear Modulus, GPa | 70 | |
73 |
Shear Strength, MPa | 800 | |
300 to 360 |
Tensile Strength: Ultimate (UTS), MPa | 1340 | |
420 to 1460 |
Tensile Strength: Yield (Proof), MPa | 930 | |
310 to 490 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 920 | |
400 |
Melting Completion (Liquidus), °C | 1430 | |
1460 |
Melting Onset (Solidus), °C | 1380 | |
1420 |
Specific Heat Capacity, J/kg-K | 460 | |
470 |
Thermal Conductivity, W/m-K | 11 | |
51 |
Thermal Expansion, µm/m-K | 8.6 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 50 | |
1.9 |
Density, g/cm3 | 8.3 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 9.3 | |
1.4 |
Embodied Energy, MJ/kg | 140 | |
19 |
Embodied Water, L/kg | 170 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 | |
44 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 2340 | |
260 to 640 |
Stiffness to Weight: Axial, points | 12 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 45 | |
15 to 52 |
Strength to Weight: Bending, points | 33 | |
16 to 36 |
Thermal Diffusivity, mm2/s | 2.9 | |
14 |
Thermal Shock Resistance, points | 61 | |
12 to 43 |
Alloy Composition
Aluminum (Al), % | 0.75 to 1.3 | |
0 |
Boron (B), % | 0 to 0.012 | |
0.00080 to 0.0050 |
Carbon (C), % | 0 to 0.030 | |
0.2 to 0.25 |
Chromium (Cr), % | 3.8 to 4.5 | |
0 to 0.3 |
Cobalt (Co), % | 0 to 0.5 | |
0 |
Copper (Cu), % | 0 to 0.5 | |
0 to 0.25 |
Iron (Fe), % | 35.6 to 44.6 | |
97.9 to 99.199 |
Manganese (Mn), % | 0 to 1.0 | |
0.6 to 0.9 |
Nickel (Ni), % | 47 to 51 | |
0 |
Niobium (Nb), % | 2.7 to 3.3 | |
0 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.025 |
Titanium (Ti), % | 1.2 to 1.8 | |
0 |