MakeItFrom.com
Menu (ESC)

Nickel Beryllium 360 vs. SAE-AISI 1035 Steel

Nickel beryllium 360 belongs to the nickel alloys classification, while SAE-AISI 1035 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel beryllium 360 and the bottom bar is SAE-AISI 1035 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.0 to 30
13 to 21
Fatigue Strength, MPa 260 to 710
210 to 340
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 510 to 1100
360 to 370
Tensile Strength: Ultimate (UTS), MPa 780 to 1860
570 to 620
Tensile Strength: Yield (Proof), MPa 380 to 1590
300 to 530

Thermal Properties

Melting Completion (Liquidus), °C 1330
1460
Melting Onset (Solidus), °C 1200
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 48
51
Thermal Expansion, µm/m-K 14
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.4
8.0

Otherwise Unclassified Properties

Density, g/cm3 8.3
7.8

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 190
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 3440
250 to 740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 62
20 to 22
Strength to Weight: Bending, points 23 to 41
19 to 21
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 19 to 46
18 to 20

Comparable Variants