MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. EN 1.3940 Stainless Steel

QE22A magnesium belongs to the magnesium alloys classification, while EN 1.3940 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is EN 1.3940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.4
34
Fatigue Strength, MPa 110
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 250
930
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 27
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.0
7.8
Embodied Carbon, kg CO2/kg material 27
3.3
Embodied Energy, MJ/kg 220
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
150
Resilience: Unit (Modulus of Resilience), kJ/m3 400
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 60
25
Strength to Weight: Axial, points 36
19
Strength to Weight: Bending, points 46
19
Thermal Diffusivity, mm2/s 59
4.1
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
64.2 to 71.4
Magnesium (Mg), % 93.1 to 95.8
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.010
12 to 14
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 2.0 to 3.0
0
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 1.8 to 2.5
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0