MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. SAE-AISI 8630 Steel

QE22A magnesium belongs to the magnesium alloys classification, while SAE-AISI 8630 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.4
12 to 24
Fatigue Strength, MPa 110
260 to 350
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150
340 to 410
Tensile Strength: Ultimate (UTS), MPa 250
540 to 680
Tensile Strength: Yield (Proof), MPa 190
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Maximum Temperature: Mechanical, °C 250
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Density, g/cm3 2.0
7.8
Embodied Carbon, kg CO2/kg material 27
1.5
Embodied Energy, MJ/kg 220
20

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 400
340 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 60
24
Strength to Weight: Axial, points 36
19 to 24
Strength to Weight: Bending, points 46
19 to 22
Thermal Diffusivity, mm2/s 59
10
Thermal Shock Resistance, points 15
18 to 23

Alloy Composition

Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
96.8 to 97.9
Magnesium (Mg), % 93.1 to 95.8
0
Manganese (Mn), % 0
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.010
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Silver (Ag), % 2.0 to 3.0
0
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 1.8 to 2.5
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0