MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. C19700 Copper

QE22A magnesium belongs to the magnesium alloys classification, while C19700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 2.4
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Shear Strength, MPa 150
240 to 300
Tensile Strength: Ultimate (UTS), MPa 250
400 to 530
Tensile Strength: Yield (Proof), MPa 190
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 250
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 570
1040
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 110
250
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 120
87 to 89

Otherwise Unclassified Properties

Density, g/cm3 2.0
8.9
Embodied Carbon, kg CO2/kg material 27
2.6
Embodied Energy, MJ/kg 220
41

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 400
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 60
18
Strength to Weight: Axial, points 36
12 to 16
Strength to Weight: Bending, points 46
14 to 16
Thermal Diffusivity, mm2/s 59
73
Thermal Shock Resistance, points 15
14 to 19

Alloy Composition

Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
97.4 to 99.59
Iron (Fe), % 0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 93.1 to 95.8
0.010 to 0.2
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.010
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Silver (Ag), % 2.0 to 3.0
0
Tin (Sn), % 0
0 to 0.2
Unspecified Rare Earths, % 1.8 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.2