MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. S35125 Stainless Steel

QE22A magnesium belongs to the magnesium alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.4
39
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 150
370
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 340
300
Maximum Temperature: Mechanical, °C 250
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Density, g/cm3 2.0
8.1
Embodied Carbon, kg CO2/kg material 27
6.4
Embodied Energy, MJ/kg 220
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
170
Resilience: Unit (Modulus of Resilience), kJ/m3 400
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 60
24
Strength to Weight: Axial, points 36
19
Strength to Weight: Bending, points 46
18
Thermal Diffusivity, mm2/s 59
3.1
Thermal Shock Resistance, points 15
12

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
36.2 to 45.8
Magnesium (Mg), % 93.1 to 95.8
0
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.010
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Silver (Ag), % 2.0 to 3.0
0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.8 to 2.5
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0