MakeItFrom.com
Menu (ESC)

Reactor Grade Zirconium vs. SAE-AISI 1536 Steel

Reactor grade zirconium belongs to the otherwise unclassified metals classification, while SAE-AISI 1536 steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is reactor grade zirconium and the bottom bar is SAE-AISI 1536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 98
190
Elongation at Break, % 21
14 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 37
73
Tensile Strength: Ultimate (UTS), MPa 330
640 to 720
Tensile Strength: Yield (Proof), MPa 160
360 to 600

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Specific Heat Capacity, J/kg-K 270
470
Thermal Conductivity, W/m-K 22
51
Thermal Expansion, µm/m-K 5.9
12

Otherwise Unclassified Properties

Density, g/cm3 6.5
7.8
Embodied Water, L/kg 280
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
93 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 130
340 to 950
Stiffness to Weight: Axial, points 8.4
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14
23 to 25
Strength to Weight: Bending, points 16
21 to 23
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 41
20 to 23

Alloy Composition

Carbon (C), % 0
0.3 to 0.37
Iron (Fe), % 0
98 to 98.5
Manganese (Mn), % 0
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zirconium (Zr), % 99.7 to 100
0
Residuals, % 0 to 0.27
0