MakeItFrom.com
Menu (ESC)

Z13004 Zinc vs. 712.0 Aluminum

Z13004 zinc belongs to the zinc alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Z13004 zinc and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
70
Elongation at Break, % 30
4.5 to 4.7
Poisson's Ratio 0.25
0.32
Shear Modulus, GPa 35
27
Tensile Strength: Ultimate (UTS), MPa 93
250 to 260
Tensile Strength: Yield (Proof), MPa 76
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 110
380
Maximum Temperature: Mechanical, °C 90
190
Melting Completion (Liquidus), °C 410
640
Melting Onset (Solidus), °C 390
610
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
40
Electrical Conductivity: Equal Weight (Specific), % IACS 37
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 6.6
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 340
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
11
Resilience: Unit (Modulus of Resilience), kJ/m3 33
240 to 270
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 3.9
24 to 25
Strength to Weight: Bending, points 7.0
30 to 31
Thermal Diffusivity, mm2/s 44
62
Thermal Shock Resistance, points 2.9
11

Alloy Composition

Aluminum (Al), % 0 to 0.0020
90.7 to 94
Cadmium (Cd), % 0 to 0.0030
0
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.0030
0 to 0.25
Iron (Fe), % 0 to 0.0030
0 to 0.5
Lead (Pb), % 0 to 0.0030
0
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 0 to 0.0010
0
Titanium (Ti), % 0
0.15 to 0.25
Zinc (Zn), % 99.985 to 100
5.0 to 6.5
Residuals, % 0
0 to 0.2