MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. EN 1.8897 Steel

Both SAE-AISI 1008 steel and EN 1.8897 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is EN 1.8897 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 93 to 100
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22 to 33
20
Fatigue Strength, MPa 150 to 220
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 220 to 230
350
Tensile Strength: Ultimate (UTS), MPa 330 to 370
560
Tensile Strength: Yield (Proof), MPa 190 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 62
49
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
22
Embodied Water, L/kg 45
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 12 to 13
20
Strength to Weight: Bending, points 13 to 15
19
Thermal Diffusivity, mm2/s 17
13
Thermal Shock Resistance, points 10 to 12
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.16
Iron (Fe), % 99.31 to 99.7
96.8 to 99.98
Manganese (Mn), % 0.3 to 0.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12