MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. Grade C-5 Titanium

SAE-AISI 1008 steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 93 to 100
310
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22 to 33
6.7
Fatigue Strength, MPa 150 to 220
510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 330 to 370
1000
Tensile Strength: Yield (Proof), MPa 190 to 310
940

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 62
7.1
Thermal Expansion, µm/m-K 12
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 18
610
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
66
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
4200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 12 to 13
63
Strength to Weight: Bending, points 13 to 15
50
Thermal Diffusivity, mm2/s 17
2.9
Thermal Shock Resistance, points 10 to 12
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.1
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.31 to 99.7
0 to 0.4
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4