MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. C17200 Copper

SAE-AISI 1008 steel belongs to the iron alloys classification, while C17200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is C17200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22 to 33
1.1 to 37
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
45
Shear Strength, MPa 220 to 230
330 to 780
Tensile Strength: Ultimate (UTS), MPa 330 to 370
480 to 1380
Tensile Strength: Yield (Proof), MPa 190 to 310
160 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
280
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 62
110
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
22
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
23

Otherwise Unclassified Properties

Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.4
9.4
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
4.2 to 500
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
110 to 5720
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 12 to 13
15 to 44
Strength to Weight: Bending, points 13 to 15
16 to 31
Thermal Diffusivity, mm2/s 17
31
Thermal Shock Resistance, points 10 to 12
16 to 46

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
96.1 to 98
Iron (Fe), % 99.31 to 99.7
0 to 0.4
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0.2 to 0.6
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 0.5