MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. C67300 Bronze

SAE-AISI 1008 steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22 to 33
12
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Shear Strength, MPa 220 to 230
300
Tensile Strength: Ultimate (UTS), MPa 330 to 370
500
Tensile Strength: Yield (Proof), MPa 190 to 310
340

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1470
870
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 62
95
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
22
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 45
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
55
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 12 to 13
17
Strength to Weight: Bending, points 13 to 15
17
Thermal Diffusivity, mm2/s 17
30
Thermal Shock Resistance, points 10 to 12
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 99.31 to 99.7
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0.3 to 0.5
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0.5 to 1.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5