MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. N08120 Nickel

SAE-AISI 1008 steel belongs to the iron alloys classification, while N08120 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22 to 33
34
Fatigue Strength, MPa 150 to 220
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 220 to 230
470
Tensile Strength: Ultimate (UTS), MPa 330 to 370
700
Tensile Strength: Yield (Proof), MPa 190 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 62
11
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
45
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
7.2
Embodied Energy, MJ/kg 18
100
Embodied Water, L/kg 45
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
190
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 12 to 13
24
Strength to Weight: Bending, points 13 to 15
21
Thermal Diffusivity, mm2/s 17
3.0
Thermal Shock Resistance, points 10 to 12
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 99.31 to 99.7
21 to 41.4
Manganese (Mn), % 0.3 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5