MakeItFrom.com
Menu (ESC)

SAE-AISI 1008 Steel vs. S44735 Stainless Steel

Both SAE-AISI 1008 steel and S44735 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1008 steel and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 93 to 100
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 22 to 33
21
Fatigue Strength, MPa 150 to 220
300
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
82
Shear Strength, MPa 220 to 230
390
Tensile Strength: Ultimate (UTS), MPa 330 to 370
630
Tensile Strength: Yield (Proof), MPa 190 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 12
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
4.4
Embodied Energy, MJ/kg 18
61
Embodied Water, L/kg 45
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 91
120
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 260
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 12 to 13
23
Strength to Weight: Bending, points 13 to 15
21
Thermal Shock Resistance, points 10 to 12
20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
28 to 30
Iron (Fe), % 99.31 to 99.7
60.7 to 68.4
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0