MakeItFrom.com
Menu (ESC)

SAE-AISI 1010 Steel vs. 2618 Aluminum

SAE-AISI 1010 steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 1010 steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
120
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22 to 31
5.8
Fatigue Strength, MPa 150 to 230
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 230 to 250
260
Tensile Strength: Ultimate (UTS), MPa 350 to 400
420
Tensile Strength: Yield (Proof), MPa 190 to 330
350

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 47
160
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
37
Electrical Conductivity: Equal Weight (Specific), % IACS 14
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.4
8.3
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 93
23
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 290
850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 12 to 14
40
Strength to Weight: Bending, points 14 to 15
42
Thermal Diffusivity, mm2/s 13
62
Thermal Shock Resistance, points 11 to 13
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0.080 to 0.13
0
Copper (Cu), % 0
1.9 to 2.7
Iron (Fe), % 99.18 to 99.62
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0.3 to 0.6
0
Nickel (Ni), % 0
0.9 to 1.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0.1 to 0.25
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15