MakeItFrom.com
Menu (ESC)

SAE-AISI 1010 Steel vs. EN 1.0488 Steel

Both SAE-AISI 1010 steel and EN 1.0488 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1010 steel and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22 to 31
27
Fatigue Strength, MPa 150 to 230
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 230 to 250
280
Tensile Strength: Ultimate (UTS), MPa 350 to 400
440
Tensile Strength: Yield (Proof), MPa 190 to 330
280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 45
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 93
100
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 290
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 12 to 14
15
Strength to Weight: Bending, points 14 to 15
16
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 11 to 13
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.080 to 0.13
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 99.18 to 99.62
96.6 to 99.38
Manganese (Mn), % 0.3 to 0.6
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050