MakeItFrom.com
Menu (ESC)

SAE-AISI 1010 Steel vs. EN 1.4911 Stainless Steel

Both SAE-AISI 1010 steel and EN 1.4911 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1010 steel and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22 to 31
11
Fatigue Strength, MPa 150 to 230
530
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 230 to 250
640
Tensile Strength: Ultimate (UTS), MPa 350 to 400
1070
Tensile Strength: Yield (Proof), MPa 190 to 330
970

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
700
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
20
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
20
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 18
49
Embodied Water, L/kg 45
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 93
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 290
2410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 14
38
Strength to Weight: Bending, points 14 to 15
30
Thermal Diffusivity, mm2/s 13
5.4
Thermal Shock Resistance, points 11 to 13
37

Alloy Composition

Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0.080 to 0.13
0.050 to 0.12
Chromium (Cr), % 0
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Iron (Fe), % 99.18 to 99.62
75.7 to 83.8
Manganese (Mn), % 0.3 to 0.6
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0.1 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.015
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4