MakeItFrom.com
Menu (ESC)

SAE-AISI 1010 Steel vs. CC755S Brass

SAE-AISI 1010 steel belongs to the iron alloys classification, while CC755S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1010 steel and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
110
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22 to 31
9.5
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 350 to 400
390
Tensile Strength: Yield (Proof), MPa 190 to 330
250

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1470
820
Melting Onset (Solidus), °C 1430
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 47
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
27
Electrical Conductivity: Equal Weight (Specific), % IACS 14
30

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 45
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 93
33
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 290
290
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 12 to 14
14
Strength to Weight: Bending, points 14 to 15
15
Thermal Diffusivity, mm2/s 13
38
Thermal Shock Resistance, points 11 to 13
13

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.7
Carbon (C), % 0.080 to 0.13
0
Copper (Cu), % 0
59.5 to 61
Iron (Fe), % 99.18 to 99.62
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.8 to 38.9