MakeItFrom.com
Menu (ESC)

SAE-AISI 1010 Steel vs. S64512 Stainless Steel

Both SAE-AISI 1010 steel and S64512 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1010 steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22 to 31
17
Fatigue Strength, MPa 150 to 230
540
Poisson's Ratio 0.29
0.28
Reduction in Area, % 46 to 56
34
Shear Modulus, GPa 73
76
Shear Strength, MPa 230 to 250
700
Tensile Strength: Ultimate (UTS), MPa 350 to 400
1140
Tensile Strength: Yield (Proof), MPa 190 to 330
890

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
750
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
28
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 14
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
10
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 45
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 93
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 290
2020
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 14
40
Strength to Weight: Bending, points 14 to 15
31
Thermal Diffusivity, mm2/s 13
7.5
Thermal Shock Resistance, points 11 to 13
42

Alloy Composition

Carbon (C), % 0.080 to 0.13
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Iron (Fe), % 99.18 to 99.62
80.6 to 84.7
Manganese (Mn), % 0.3 to 0.6
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4