MakeItFrom.com
Menu (ESC)

SAE-AISI 1012 Steel vs. EN 1.0571 Steel

Both SAE-AISI 1012 steel and EN 1.0571 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1012 steel and the bottom bar is EN 1.0571 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21 to 31
23
Fatigue Strength, MPa 150 to 230
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 230 to 250
350
Tensile Strength: Ultimate (UTS), MPa 360 to 400
550
Tensile Strength: Yield (Proof), MPa 200 to 330
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
21
Embodied Water, L/kg 45
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 93
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 300
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 14
19
Strength to Weight: Bending, points 14 to 15
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 11 to 13
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0.1 to 0.15
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 99.16 to 99.6
96.5 to 99
Manganese (Mn), % 0.3 to 0.6
0.9 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Vanadium (V), % 0
0 to 0.1