MakeItFrom.com
Menu (ESC)

SAE-AISI 1012 Steel vs. C95520 Bronze

SAE-AISI 1012 steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1012 steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
280
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21 to 31
2.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 360 to 400
970
Tensile Strength: Yield (Proof), MPa 200 to 330
530

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
240
Melting Completion (Liquidus), °C 1470
1070
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 53
40
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 18
58
Embodied Water, L/kg 45
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 93
21
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 300
1210
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 13 to 14
33
Strength to Weight: Bending, points 14 to 15
27
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 11 to 13
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 99.16 to 99.6
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5