MakeItFrom.com
Menu (ESC)

SAE-AISI 1012 Steel vs. N10675 Nickel

SAE-AISI 1012 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1012 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 21 to 31
47
Fatigue Strength, MPa 150 to 230
350
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
85
Shear Strength, MPa 230 to 250
610
Tensile Strength: Ultimate (UTS), MPa 360 to 400
860
Tensile Strength: Yield (Proof), MPa 200 to 330
400

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 53
11
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
80
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 1.4
16
Embodied Energy, MJ/kg 18
210
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 93
330
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 300
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 13 to 14
26
Strength to Weight: Bending, points 14 to 15
22
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 11 to 13
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.1 to 0.15
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 99.16 to 99.6
1.0 to 3.0
Manganese (Mn), % 0.3 to 0.6
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1