MakeItFrom.com
Menu (ESC)

SAE-AISI 1012 Steel vs. R56401 Titanium

SAE-AISI 1012 steel belongs to the iron alloys classification, while R56401 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1012 steel and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 31
9.1
Fatigue Strength, MPa 150 to 230
480
Poisson's Ratio 0.29
0.32
Reduction in Area, % 45 to 57
17
Shear Modulus, GPa 73
40
Shear Strength, MPa 230 to 250
560
Tensile Strength: Ultimate (UTS), MPa 360 to 400
940
Tensile Strength: Yield (Proof), MPa 200 to 330
850

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 53
7.1
Thermal Expansion, µm/m-K 12
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 18
610
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 93
83
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 300
3440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 13 to 14
59
Strength to Weight: Bending, points 14 to 15
48
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 11 to 13
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.1 to 0.15
0 to 0.080
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 99.16 to 99.6
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5