MakeItFrom.com
Menu (ESC)

SAE-AISI 1015 Steel vs. C70400 Copper-nickel

SAE-AISI 1015 steel belongs to the iron alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1015 steel and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 390 to 440
300 to 310
Tensile Strength: Yield (Proof), MPa 210 to 370
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1470
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
64
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
14
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 45
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 360
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 14 to 15
9.3 to 9.8
Strength to Weight: Bending, points 15 to 16
11 to 12
Thermal Diffusivity, mm2/s 14
18
Thermal Shock Resistance, points 12 to 14
10 to 11

Alloy Composition

Carbon (C), % 0.13 to 0.18
0
Copper (Cu), % 0
89.8 to 93.6
Iron (Fe), % 99.13 to 99.57
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5